【导读】:在科学技术迅猛发展的今天,自动化行业的发展日新月异,涌现了许多富有创造力的自动化产品,给我们的日常生活带来了深远的影响。而作为主导并享受这场科学盛宴的人们,很有必要思考一下产生这一幕的主角——自动化仪器仪表和智能仪器的发展之路......

一、自动化仪器仪表  1、概述  自动化仪表,是由若干自动化元件构成的,具有较完善功能的自动化技术工具。它一般同时具有数种功能,如测量、显示、记录或测量、控制、报警等。自动化仪表本身是一个系统,又是整个自动化系统中的一个子系统。自动化仪表是一种“信息机器”,其主要功能是信息形式的转换,将输入信号转换成输出信号。信号可以按时间域或频率域表达,信号的传输则可调制成连续的模拟量或断续的数字量形式。  众所周知,自动化仪器仪表是科学进步的前提和生产活动的依据。当人类活动的领域越过感觉器官极限的时候,仪器仪表就成了科学进步和一切事业取得成功的前提。许多科学的进展首先取决于仪器仪表的进展。仪器仪表技术是通过测量获得数据信息的信息技术,自动化仪器仪表工业是信息工业的源头,它的根本属性就是信息性。在生产过程中,自动化仪器仪表对“物质流”信息进行检测、传输、显示、控制与执行,进而实现管理和决策。它主要包括各种电量与非电量的传感器、变送器及自动检测仪表、自动显示仪表、自动调节仪表、系统控制装置、执行器等,是国民经济各部门的重要技术装备之一。   在自动化控制系统中,仪器仪表作为其构成元素,它的技术进展是跟随控制系统技术的发展的。常规的自动化仪器仪表适应常规控制系统的要求,它们以经典控制理论和现代控制理论为基础,以控制对象的数学模型为依据。当今,控制理论已发展到智能控制的新阶段,自动化仪器仪表的智能化就成为必然和必须。本文将就自动化仪器仪表的智能化的状况与进展,以及当今对智能仪器仪表研究、开发热点做概要的分析与表述。作者建议人们关注自动化仪器仪表智能化技术的进展,关注仪器仪表装置与控制系统技术的互动发展,这对推进我国自动化技术水平的进一步提高将是大为有益的。 2、什么是智能化的仪器仪表?  至今虽然没有一个明确的统一的定义,但作者感到在仪器仪表的刊物、广告、产品说明书等中不恰当的使用“智能化”的情况较多,把一些还不具有智能功能的仪表也称为智能仪表的现象时有出现。到底应该如何理解和表达仪器仪表的“智能化”,什么样的仪器仪表才能称作智能化的仪器仪表,作者希望理论界和实业界达到一个共同认识,能对实际的仪器仪表有一个合理的、恰当的表达。虽然,什么是“智能”?目前没有统一的定义,但一般认为“智能”是指“一种根据外界变化的条件,确定正确行为的能力”。因此,智能化的仪器仪表应能随着外界条件的变化做出正确的反应,模仿和扩充人的智能行为。从信息技术发展的几个层次看,“数字化”是最低层次,“智能化”是最高层次。它具有总结经验、理解、推理、判断和分析的能力。“智能化”的标志是知识的表达与应用。因此,在仪器仪表中,“智能”的含义可有两个层面:即采用人工智能的理论方法和技术;具有拟人智能的特性和功能。   经常出现的情况是,把带有微处理器的仪器仪表称作智能仪表,其实,应该有所区分:如果该仪器仪表采用了人工智能的理论方法和技术或该仪器仪表具有拟人智能的特性和功能,该仪器仪表就可称为智能仪表。也就是说,带有微处理器的仪器仪表不一定是智能仪表,而相反智能仪表必然带有微处理器。没有微处理器的仪表很难实现智能仪器仪表应具有的特性和功能。 3、自动化仪器仪表技术的进展历程简要回顾  (1) 模拟仪表时代  从20世纪60年代开始,为满足工业发展的需要,将测量记录和控制功能组合在一起,这类仪表称为“基地式”仪表。通常是以在带有调节单元的显示记录仪“基地”上,配上测量元件及执行器构成简单控制系统。随着生产规模的扩大,产生了以功能划分的“单元组合式”仪表。根据不同的控制要求,选择相应仪表单元组合起来构成各种不同复杂程度的控制系统。无论是“基地式”仪表还是“单元组合式”仪表,它们的共同特点都是模拟式的,采用的是模拟技术,而控制系统以经典控制理论为基础。   (2) 数字化仪表时代  20世纪80年代,随着计算机技术的发展及其在仪器仪表中的应用,以微处理器为核心器件的微机化仪表应运而生,产生了各种数字式变送器、数字式调节器、数字式显示记录仪、可编程控制器和智能仪表。数字化仪表与模拟式仪表相比,其功能、性能、可靠性、通信功能等均有了质的飞跃。主要的特点是采用数字技术,计算机技术用于仪器仪表和控制领域,计算机控制系统在工业控制中得到应用与推广。  (3) 仪器仪表新概念—虚拟仪表技术  虚拟仪表技术从根本上开创了仪器仪表的新概念,它利用计算机技术实现和扩展仪器的功能。它是计算机硬件资源、仪器仪表测控硬件并用于数据分析、过程通信及图形用户界面的软件之间的有效结合,是一种功能意义上的而非物理意义上的仪器仪表概念,软件是关键。在虚拟仪表中,计算机作为一个控制和数据处理中心,传统仪表的硬件被软件所代替,用户可以仅仅通过修改软件而达到改变仪表功能的目的。可见,仪器仪表本身的硬件和软件的界限已经模糊化了,仪器仪表设计的主要基础是它的软件,而不是传统仪器仪表的硬件。在这种情况下,仪器仪表工作者从观念到知识结构和素质,都要以信息技术和网络思想来指导仪器仪表的设计与应用。  (4) 仪器仪表真正意义上的智能化—采用人工智能技术的智能仪表  智能化的自动化仪器仪表应以智能控制理论为基础,体现人的智能行为。人工智能是智能控制理论的基本组成部分之一,它以知识为基础,它的目标是建造智能化的计算机系统,用来模拟和执行人类的智力功能,如判断、理解、推理、识别、规划、学习和问题求解等等,进而用自动机模仿人类的思维过程和智能行为。基于智能控制理论基础的智能仪器仪表目前大致有几方面的进展:•专家控制器  专家控制系统(expert control system, ECS)是典型的基于知识控制系统,它是一个具有大量的专门知识与经验的程序系统。它运用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,解决那些需要人类专家才能解决好的复杂问题。专家控制器的结构按控制要求的不同而有所不同。典型的结构由知识库、推理机、人机接口等组成。其中,知识的获取、知识库的建立是关键。人们已经总结出的方法是领域专家和知识专家的有机结合,同时收集、归纳有经验的操作员方面的知识。然后把获取的知识变成可用的规则,以期在推理过程中得到更高的命中率。专家控制已在工业控制中得到广泛的应用。•模糊控制器  模糊控制器(FC-Fuzzy Controller),也称模糊逻辑控制器(FLC-Fuzzy Logic Controller)。自然界的事物都具有一定的模糊性,模糊逻辑在控制领域中的应用产生了模糊控制技术。由于模糊控制技术具有处理不确定性、不精确性和模糊信息的能力,对无法建造数学模型的被控过程能进行有效的控制,能解决一些用常规控制方法不能解决的问题,因而模糊控制在工业控制领域得到了广泛的应用。模糊控制器一般由输入标定、模糊化、模糊决策、清晰化、输出标定等几个部分组成。其中,模糊化、模糊决策、清晰化是主要和基本的部分,“模糊化”将输入量(精确量)变为模糊量,“模糊决策”进行模糊运算,其过程是由推理机进行预估输出推理,得到模糊量输出。“清晰化”将模糊量输出转化为精确量,提供给系统的驱动器定标后使用。当前,模糊控制技术在工业控制中得到广泛的应用,尤其在不确定性过程、难于建模的场合发挥了模糊控制技术的长处。模糊控制器在家电和其它行业同样得到了广泛的应用。 •神经网络控制器  神经网络在工业控制系统中的应用提高了系统的信息处理能力,提高了系统的智能水平。所谓神经网络控制,简称神经控制,它是指采用神经网络这一技术对复杂的非线性对象进行建模,或担当控制器,或优化计算,或进行推理,或故障诊断等工作。由于神经网络具有高度的并行结构和并行实现能力,具有对任意非线性关系的描述能力,具有通过训练学习归纳全部数据能力,使得它在控制系统中被广泛灵活地应用。•仿人控制器  仿人控制器比起专家控制、模糊控制等更强调对人的控制行为和功能的综合性模仿。在控制过程中,它利用计算机模拟人的控制行为和功能,实现对没有精确模型的对象进行有效的控制。设计仿人控制器必须获得控制系统的特征信息,即建立系统的特征模型,其方法是定性描述系统的动态特性,对信息空间划分出一定的区域,分别表示系统的一种特征状态,所有特征状态的集合就构成特征模型。仿人控制器的算法设计就是根据特征模型和控制模态进行合理的组合,因而就出现了多种仿人控制模式和算法。仿人控制器的多模态方式在工业控制中被广泛地采用。二、智能仪器  智能仪器的出现,极大地扩充了传统仪器的应用范围。智能仪器凭借其体积小、功能强、功耗低等优势,迅速地在家用电器、科研单位和工业企业中得到了广泛的应用。 1、智能仪器的工作原理  传感器拾取被测参量的信息并转换成电信号,经滤波去除干扰后送入多路模拟开关;由单片机逐路选通模拟开关将各输入通道的信号逐一送入程控增益放大器,放大后的信号经A/D 转换器转换成相应的脉冲信号后送入单片机中;单片机根据仪器所设定的初值进行相应的数据运算和处理(如非线性校正等);运算的结果被转换为相应的数据进行显示和打印;同时单片机把运算结果与存储于片内FlashROM(闪速存储器) 或E2PROM(电可擦除存贮器) 内的设定参数进行运算比较后,根据运算结果和控制要求,输出相应的控制信号(如:报警装置触发、继电器触点等)。此外,智能仪器还可以与PC 机组成分布式测控系统,由单片机作为下位机采集各种测量信号与数据,通过串行通信将信息传输给上位机——PC机,由PC机进行全局管理。 2、智能仪器的功能特点  随着微电子技术的不断发展,集成了CPU、存储器、定时器/计数器、并行和串行接口、看门狗、前置放大器甚至A/D、D/A转换器等电路在一块芯片上的超大规模集成电路芯片(即单片机)出现了。以单片机为主体,将计算机技术与测量控制技术结合在一起,又组成了所谓的“智能化测量控制系统”,也就是智能仪器。  与传统仪器仪表相比,智能仪器具有以下功能特点:  2.1 操作自动化  仪器的整个测量过程如键盘扫描、量程选择、开关启动闭合、数据的采集、传输与处理以及显示打印等都用单片机或微控制器来控制操作,实现测量过程的全部自动化。  2.2 具有自测功能  包括自动调零、自动故障与状态检验、自动校准、自诊断及量程自动转换等。智能仪表能自动检测出故障的部位甚至故障的原因。这种自测试可以在仪器启动时运行,同时也可在仪器工作中运行,极大地方便了仪器的维护。  2.3 具有数据处理功能   这是智能仪器的主要优点之一。智能仪器由于采用了单片机或微控制器,使得许多原来用硬件逻辑难以解决或根本无法解决的问题,现在可以用软件非常灵活地加以解决。例如,传统的数字万用表只能测量电阻、交直流电压、电流等,而智能型的数字万用表不仅能进行上述测量,而且还具有对测量结果进行诸如零点平移、取平均值、求极值、统计分析等复杂的数据处理功能,不仅使用户从繁重的数据处理中解放出来,也有效地提高了仪器的测量精度。  2.4 具有友好的人机对话能力  智能仪器使用键盘代替传统仪器中的切换开关,操作人员只需通过键盘输入命令,就能实现某种测量功能。与此同时,智能仪器还通过显示屏将仪器的运行情况、工作状态以及对测量数据的处理结果及时告诉操作人员,使仪器的操作更加方便直观。  2.5 具有可程控操作能力  一般智能仪器都配有GPIB、RS232C、RS485 等标准的通信接口,可以很方便地与PC 机和其他仪器一起组成用户所需要的多种功能的自动测量系统,来完成更复杂的测试任务。 3、智能仪器的发展概况  上世纪80 年代,微处理器被用到仪器中,仪器前面板开始朝键盘化方向发展,测量系统常通过IEEE—488 总线连接。不同于传统独立仪器模式的个人仪器得到了发展。  90 年代,仪器仪表的智能化突出表现在以下几个方面:微电子技术的进步更深刻地影响仪器仪表的设计;DSP 芯片的问世,使仪器仪表数字信号处理功能大大加强;微型机的发展,使仪器仪表具有更强的数据处理能力;图像处理功能的增加十分普遍;VXI总线得到广泛的应用。  近年来,智能化测量控制仪表的发展尤为迅速。国内市场上已经出现了多种多样智能化测量控制仪表,例如,能够自动进行差压补偿的智能节流式流量计、能够进行程序控温的智能多段温度控制仪、能够实现数字PID 和各种复杂控制规律的智能式调节器,以及能够对各种谱图进行分析和数据处理的智能色谱仪等。  国际上智能测量仪表更是品种繁多,例如,美国HONEYWELL公司生产的DSTJ-3000 系列智能变送器,能进行差压值状态的复合测量,可对变送器本体的温度、静压等实现自动补偿,其精度可达到±0.1% FS; 美国RACA- DANA 公司的9303 型超高电平表,利用微处理器消除电流流经电阻所产生的热噪声,测量电平可低达- 77dB; 美国FLUKE 公司生产的超级多功能校准器5520A,内部采用了3 个微处理器,其短期稳定性达到1ppm,线性度可达到0.5ppm;美国FOXBORO 公司生产的数字化自整定调节器,采用了专家系统技术,能够像有经验的控制工程师那样,根据现场参数迅速地整定调节器。这种调节器特别适合于对象变化频繁或非线性的控制系统。由于这种调节器能够自动整定调节参数,可使整个系统在生产过程中始终保持最佳品质。 4、智能仪器仪表的研究开发与实用化的进展  智能仪器仪表发展很快,在国内市场上已经出现了各种智能化仪表,例如,具有自动进行差压补偿的智能节流式流量计,具有对图谱进行分析和数据处理的智能色谱仪等等。国际上品种更多,例如,美国Honeywell公司生产的DSTJ-3000系列智能变送器,能进行差压值状态的复合测量,可对变送器本体的温度、静压等实现自动补偿;美国Foxboro公司生产的数字化自整定调节器,采用了专家系统技术,能根据现场参数迅速地整定调节器的调节参数。智能仪器仪表的研究开发是当前自动控制领域热点之一,有相当多的智能仪器仪表已进入实用化阶段。大致可从两方面了解:(1) 传感器、变送器、执行器等现场仪表智能化是主要热点;(2) 智能控制器乃是仪器仪表智能化开发、应用的主流方向。 5、智能仪器的发展趋势   5.1 微型化  微型智能仪器指微电子技术、微机械技术、信息技术等综合应用于仪器的生产中,从而使仪器成为体积小、功能齐全的智能仪器。它能够完成信号的采集、线性化处理、数字信号处理,控制信号的输出、放大、与其他仪器的接口、与人的交互等功能。微型智能仪器随着微电子机械技术的不断发展,其技术不断成熟,价格不断降低,因此其应用领域也将不断扩大。它不但具有传统仪器的功能,而且能在自动化技术、航天、军事、生物技术、医疗领域起到独特的作用。例如,目前要同时测量一个病人的几个不同的参量,并进行某些参量的控制,通常病人的体内要插进几个管子,这增加了病人感染的机会,微型智能仪器能同时测量多参数,而且体积小,可植入人体,使得这些问题得到解决。  5.2 多功能化  多功能本身就是智能仪器仪表的一个特点。例如,为了设计速度较快和结构较复杂的数字系统,仪器生产厂家制造了具有脉冲发生器、频率合成器和任意波形发生器等功能的函数发生器。这种多功能的综合型产品不但在性能上(如准确度)比专用脉冲发生器和频率合成器高,而且在各种测试功能上提供了较好的解决方案。  5.3 人工智能化  人工智能是计算机应用的一个崭新领域,利用计算机模拟人的智能,用于机器人、医疗诊断、专家系统、推理证明等各方面。智能仪器的进一步发展将含有一定的人工智能,即代替人的一部分脑力劳动,从而在视觉(图形及色彩辨读)、听觉(语音识别及语言领悟)、思维(推理、判断、学习与联想) 等方面具有一定的能力。这样,智能仪器可无需人的干预而自主地完成检测或控制功能。显然,人工智能在现代仪器仪表中的应用,使我们不仅可以解决用传统方法很难解决的一类问题,而且可望解决用传统方法根本不能解决的问题。  5.4 融合ISP 和EMIT 技术,实现仪器仪表系统的Internet 接入(网络化)  伴随着网络技术的飞速发展, Internet 技术正在逐渐向工业控制和智能仪器仪表系统设计领域渗透,实现智能仪器仪表系统基于Internet 的通讯能力以及对设计好的智能仪器仪表系统进行远程升级、功能重置和系统维护。  在系统编程技术(In- SystemProgramming,简称ISP 技术)是对软件进行修改、组态或重组的一种最新技术。它是LATTICE 半导体公司首先提出的一种使我们在产品设计、制造过程中的每个环节,甚至在产品卖给最终用户以后,具有对其器件、电路板或整个电子系统的逻辑和功能随时进行组态或重组能力的最新技术。ISP技术消除了传统技术的某些限制和连接弊病,有利于在板设计、制造与编程。ISP 硬件灵活且易于软件修改,便于设计开发。由于ISP器件可以像任何其他器件一样,在印刷电路板(PCB)上处理,因此编程ISP 器件不需要专门编程器和较复杂的流程,只要通过PC机、嵌入式系统处理器甚至INTERNET远程网进行编程。  EMIT 嵌入式微型因特网互联技术是EmWare 公司创立ETI(Extend the Internet)扩展Internet联盟时提出的,它是一种将单片机等嵌入式设备接入Internet 的技术。利用该技术,能够将8 位和16 位单片机系统接入Internet,实现基于Internet 的远程数据采集、智能控制、上传/下载数据文件等功能。  目前美国ConnectOne 公司、emWare 公司、TASKING 公司和国内的P&S 公司等均提供基于Internet的Device睳etworking 的软件、固件(Firmware)和硬件产品。 5.5 虚拟仪器是智能仪器发展的新阶段  5.5.1 新的智能化仪器  测量仪器的主要功能都是由数据采集、数据分析和数据显示等三大部分组成的。在虚拟现实系统中,数据分析和显示完全用PC 机的软件来完成。因此,只要额外提供一定的数据采集硬件,就可以与PC 机组成测量仪器。这种基于PC 机的测量仪器称为虚拟仪器。在虚拟仪器中,使用同一个硬件系统,只要应用不同的软件编程,就可得到功能完全不同的测量仪器。可见,软件系统是虚拟仪器的核心,“软件就是仪器”。传统的智能仪器主要在仪器技术中用了某种计算机技术,而虚拟仪器则强调在通用的计算机技术中吸收仪器技术。  5.5.2 虚拟仪器的前景  我们注意到,“软件就是仪器”的断言将会成为现实,它是仪器仪表概念的根本突破。首先,如前所述,虚拟仪表已开创了仪器仪表的新概念,虚拟仪表的功能基本是由软件实现的。虚拟仪表技术本身正在飞速的发展着,就以NI LabVIEW的发展可见一般:1983年是基于文本的编程,为测量任务带来了更强的灵活性。1993年LabVIEWTM图形化开发环境使复杂的应用变得直观。2003年LabVIEW 7 Express-Express(快速)技术极大的简化了软件的复杂性,并保留了强大的功能和灵活性。可见,虚拟仪表的软件功能正在进一步的、快速的增强。其次,软测量技术解决了难于或不能测量的问题,软测量技术的基本方法是把自动控制理论与生产过程知识有机结合起来,运用计算机技术,对于难于测量或暂时不能测量的重要变量,选择容易测量的变量,通过构成一定的数学关系来推断和估计,以软件来代替硬件功能。软测量技术在工业应用中取得了不少成功的实例。国外有Inferential Control 等公司以商品化软件形式推出各自的软测量仪表,广泛应用于石油化工企业的控制之中,取得了明显的经济效益。更值得注意的是,工程项目中,硬件成本所占的比例在不断减少。这是因为现代工程项目主要通过计算机专用或共用平台,配上功能强大的软件,在局域网或远程网上实现的缘故。三、结束语  进入21世纪,迎来了控制系统的网络控制新时代,自动化仪器仪表也进入了数字化、智能化和网络化的新阶段。智能化已经成为仪器仪表目前技术水平的重要标志之一。控制理论与控制系统技术的发展,带动了仪器仪表技术的发展和进步,而仪器仪表技术的新进步,同样对控制系统的发展起到了支持、推进的作用。理论和实践表明,不能孤立地看待仪器仪表技术的发展,而应从控制系统的角度,把仪器仪表技术融入控制系统技术之中。关注仪器仪表技术的发展现状及其与控制系统技术之间的互动,有助于国家自动化技术的新进展和提高国家的自动化水平。附(引用文献):1、《百度百科》2、文鹏,赵维琴.关注自动化仪器仪表智能化技术的状况与进展.3、孙瑞强.智能仪器功能原理及其发展趋势.4、赵茂泰.《智能仪器原理及应用》.电子工业出版社,2009.                            (自动化网莫铭编辑)