船舶电站一般由燃油发动机、发电机、主配电屏组成,如图 1所示,每个组成部分有各自的输入输出信号,传统的控制方式是将各自的输入或输出连接到对应的控制器,由对应的控制器实现单台设备的控制,如电网检测到负载较大时,自动产生一个备用发电机起动信号,备用的发动机控制器接受到该信号后自动起动,延时并建立电压后,由自动并车装置控制将该台发电机并入电网运行,运行过程中由负载分配装置进行负载的自动调节,如果电网负载较小时,经过负载平衡分配后,每台发电机的负载过小,系统将会自动卸载一台原来备用的发电机,待脱离电网运行延时后自动熄火并回到备用状态,实现电站的自动解列。

点击看大图

1. CAN总线与船舶电站
随着航运事业的发展和船舶电站的要求提高,总线技术逐渐在船舶控制技术中使用,分布式系统在新设计系统中渐渐成为主角。其中控制器局域网(Controller Area Network,CAN)模块是一个串行接口,可用于与其他外设或者单片机之间进行通信,此接口/协议是针对允许在噪声环境下通信而设计的。本文以CAN总线为基础,结合单片微机(MCU)技术,
将船舶电站中的三台发动机、三台发电机、三个主配电屏构成的供电电站系统实现无人自动控制并可实现远程监控。
CAN具有几个重要的特点:一是总线协议完全开放,从相关 CAN芯片或 MCU中可以直接得到相关的控制字及寄存器,只要对相关的寄存器进行有效的设置,CAN总线模块能自动地进行通讯,MCU可以直接通过读或写处理 CAN通讯的信息;二是 CAN为底层协议,用户完全可以在此基础上进行用户自定制的高层协议;三是该总线有成熟的市场使用,有可靠的抗干扰特性。所以在船舶控制系统中也越来越多地使用CAN 总线。
船舶电站按控制功能可以分成如下几个部分:
1) 发动机的起动、停止控制
2) 发电机的电压控制和无功分配控制
3) 发电机的信号检测及保护控制
4) 发电机自动并车控制
5) 发电机的电能管理控制

上述控制各有对应的传感器,信号变送器和执行控制器与之相配,本系统将各环节或组成部分用带 CAN总线的单片微机来实现,系统结构具体如图 2所示,系统分为三层,昀高一层是一个电网的电能管理控制器( PMU), 检测电网的用电情况,并根据情况向中间一层对应的控制器发送起动或停止信号,或发出负荷增减信号,中间一层是每台发电机所需要的控制器,根据需要调节控制各自的电量信号,如电压或电流等,昀低一层是传感器和执行器层,由一个或几个传感器或执行器构成一个 CAN总线的单元,所有的组成均挂在一个 CAN总线网上,为保证系统可靠,物理上每个单元带双 CAN接口,整个网络构成两个 CAN网络,即 CAN 总线实现冗余控制,理论上,任意一个控制器均可控制任意一个传感器或执行器,即可实现控制器的冗余控制,实际上是将三台发电机对应功能的控制器做成相互冗余,不同性质的控制器不做冗余,但是昀高一级的控制器( PMU)内带中间以及所有控制器的功能,可以实现向下冗余控制。


点击看大图

开关量输入变送器 1是检测燃油发动机的一些基本信号并将其转换成CAN 总线接口信号,这些基本信号包括:冷却水压力,滑油温度,油底壳油位,发动机备用状态,发动机自动控制位置,燃油压力,起动空气压力等;CAN总线 2是整个系统通讯的网络总线,图示为一条总线,实际为保证系统可靠,使用两条总线方式,每个单元均带 2个总线接口,实现双总线冗余;起停输出执行器 3是带 CAN接口的继电器输出,去控制发动机的起动、停止和紧急停止电磁阀;发动机起动停止及保护控制器 4是控制发动机运行或停止的控制核心,一方面接受控制按钮等信号,一方面接受 CAN总线的信号,并根据这些命令信号去控制发动机;加减输出执行器 5是带CAN总线的继电器输出控制器,并带本地手动输出,其作用是控制发动机内调速器的输入,起到调节速度或负载的目的;燃油发动机 6根据起动或停止电磁阀控制运行,根据调速器来调节运行速度或输出功率;转速等模拟输入变送器 7是检测发动机的速度,冷却水温度,滑油压力,排气温度等一些重要参数的传感器并将信号转换为 CAN总线接口的信号;电站电能管理控制器 8是整个控制系统的调度控制单元,检测电网和每台发动机的状态,实现调频调载的自动控制,或实现自动起动,或控制自动卸载解列;调压执行器9是带CAN总线控制的相复励自动调压控制器,根据 CAN总线来的命令或自带的调节旋钮信号调节其旁路可控硅的触发角,从而实现发动机的调压控制;发电机 10接受 9的励磁调节,由原动机 6带动输出电能给配电装置;自动调压及无功控制器 11根据发电机的电压,电流信号,同时需要判断其无功功率和功率因素值,