解析余度管理 现代余度管理从硬件余度向综合余度和解析余度管理发展。过去,动态系统的容错设计是基于硬件余度(余度部件、余度系统)而实现的,如三余度和四余度系统,通过简单的表决逻辑来判断故障。硬件余度(管理)(hardware redundancy)遇到的主要问题是重量大、体积大、费用高、飞行器承载能力小。同时“同类”余度系统具有相同的寿命周期,假如一个有故障可能其它也发生故障。但用“异类”余度系统又难以保证表决检验的一致性。为了使整个系统可靠、安全,且提高容错系统可利用性,因此有必要研究新方法消除或减少硬件余度。 进入70年代,随着计算机技术及其计算能力、可靠性的提高,现代控制理论的产生和发展,出现了以分析冗余(analytical redundancy)取代物理(硬件)冗余的余度可靠性设计和余度管理思想。首先在仪表故障检测(IFD)中出现了这种新方式,其思想是用3个或以上不同类
传感器测量系统不同的变量,产生完全不同的信号,通过一复杂综合比较逻辑来检测传感器故障。尽管是异类传感器,但所有都是由系统中同一动态状态激励的,因此具有某种功能关系。这种新方式初期称为本质余度(inherent redundancy)或功能余度(functional redundancy),以区别于物理余度或硬件余度。后来人们把它称为分析余度或人工余度(artifical redundancy)。分析余度方式是一利用状态估计、参数估计、自适应滤波、变量阈值逻辑、统计决策理论和综合逻辑的信号处理技术,可以在电子电路或计算机上实现。目前实施的余度管理方式还是一综合方式,即包括硬件余度和解析余度。发展方向是分析余度。1971年Beard首次提出了故障检测滤波器(FDF)概念,标志着基于分析冗余(基于模型)故障诊断技术的诞生。
可信性系统设计 现代故障诊断是由于实施主动(视情)维修策略和建立监控系统的需要而发展起来的。由于现代机电自动化及控制系统的规模不断扩大、复杂性日益提高,以及系统投资的巨大,人们迫切需要提高机电自动化及控制系统的可信性。因而有必要建立一个监控系统来监督整个自动化系统的运行状态,不断检测系统的变化和故障信息,进而采取必要的措施(如隔离和修复或改变控制率等)来防止故障的传播和灾难性事故的发生。而其前提条件是具有在线实时可靠检测和诊断故障的能力。因此故障诊断是实现可信性系统设计的关键环节。可信性系统指集可靠性、有效性、可维修性和安全性为一体的系统。提高系统可信性的方法,即设计可信性系统的方法:①提高元部件本身的可靠性;②采用余度系统(部件),如硬件、软件和复合冗余结构;③采用基于FDIA的容错和监控等控制系统。 最底层是控制层,功能是实现输入输出和各种控制率;中间层功能是检测传感器、驱动器、控制回路和控制率中的故障状态;最高层功能是状态—事件逻辑,即接受来自检测器的输入并输出执行措施。 基于FDIA的容错、监控控制系统的实现过程:①故障(失效)模态和影响分析(FMEA);②影响严重度评价;③修复、补救措施推导;④故障修复设计(修正控制层、改变到另外控制模态、控制系统重构);⑤逆FMEA过程;⑥系统建模(解析余度方法的故障检测的基础);⑦故障检测器设计;⑧监控系统逻辑设计。
鲁棒故障诊断 故障诊断的鲁棒性是所有故障诊断理论、方法和系统所面临的重要问题。鲁棒故障诊断(RFD)概念首次在基于模型的故障诊断方法中提出。目前能查到的鲁棒故障诊断研究都是基于控制系统数学模型的。特别需指出的是在整个机械系统中,包括液压系统、液压控制系统,还没有见到鲁棒故障诊断的研究报道。 基于模型的鲁棒故障诊断研究始于80年代初。经过十几年的研究和发展,提出了不少方法,也进行了一些应用研究,国内一些学者也曾在RFD方面做过有益的研究。总的来说,RFD还是一新研究方向,有待深入研究。 基于人工神经网络的故障诊断,国内外已经在这方面做了许多研究。虽然ANN在网络拓扑结构上具有原则鲁棒性,但其BP学习算法是非鲁棒性的。就目前能查到的资料看,对鲁棒学习算法的研究刚刚开始,提出BP算法的非鲁棒性问题和解决途径,但还没有有效的鲁棒算法,对鲁棒故障诊断的研究尚未见到文献报道。 RFD是解决故障诊断实际应用的有效途径,是提高故障诊断系统性能指标的有效方式,同时将产生新颖有效的故障诊断理论和方法。
将来的研究方向 目前和今后的主要研究可归纳为以下几个方面:①在线实时故障检测算法;②本质非线性动态系统的FD方法。主要研究获取其状态、参数的有效方法;③对模型误差及不确定因素具有鲁棒性的FD算法;④鲁棒残差发生器和鲁棒(最优、自适应)阈值的设计理论和方法;⑤对无先验知识时被监控系统结构变化的检测及识别;⑥实时FD专家系统的开发及与基于ANN方法、模型方法的FD方法的综合;⑦智能故障检测和诊断系统理论和方法的研究。自学习检测系统;⑧以FDIA为核心的容错控制、监控系统和可信性系统。 对故障检测、诊断来说,具体在以下方面需大力研究:①反馈系统(闭环系统)中的故障诊断;②小幅值故障、软性故障和早期故障的检测;③执行器、过程和传感器中故障的诊断;④除突变性故障外的故障的早期预报,即预报诊断;⑤动态系统中的在线实时故障检测;⑥系统过渡(transient)过程检测和过渡过程中的故障检测;⑦动态系统启动和结束过程中的故障检测;⑧(鲁棒、自适应)阈值选择和确定。 作者:中国科学院自动化研究所 董选明 信息来源:《工程机械》
评论排行