多电平高压变频器是我们国家近年来在电力电子领域的一个研究重点,它作为一种应用于高压大功率变换场合的新型变频装置,将可以很有效的应用在那些高压风机、水泵、压缩机的节能改造中,同时也可以大量的采用在工艺和设备要求的电压等级较高和容量较大的交流调速的环境中。其主回路的拓扑结构是本文探讨与剖析的主题,本文以欧洲的阿尔斯通电气公司在我国的宝新不锈钢厂和太钢应用在轧机主传动上的交流、高压、多电平的变频器为例进行了剖析。
1、引言
交流电机变频调速已经是当前各行各业都普遍关注的重大项目。人们期待用高效率、高可靠而又经济可接受的变频技术来调节交流电机的转速已达上百年的历史了。在20世纪60年代后半期,电力半导体器件及其在变频器应用中的进步,成就了发达国家在70年代初的第一次世界能源危机期间用变频调速实现高效节能事业的大发展。对于交流电动机,改变频率即能调速。随着可控硅、GTO、IGCT和IGBT等电力电子元器件的开发,相应的控制技术的发展和这些电力电子器件的高度集成化,使得变频器在工业中得到了更广泛的应用。受限于电力电子元器件的开发与应用,在过去的十几年中还基本上是以低压变频调速装置为主,即:电压为380V~690V,工业中大量应用的大容量的高电压的交流电动机还仅仅采用其他的调速方式或不调速的形式运行在工业系统当中,从而消耗了大量的能源。
根据目前各主要变频器的制造厂家的不同研制和开发,现有的高压变频器的组成方式也不尽相同。根据电压的不同,可分为直接高压型和通过升压变压器的高-低-高型(实际为低压变频器);根据中间的耦合形式,分为交-交型的变频器和交-直-交型的变频器;而根据中间直流偶合环节组合的不同又分为电压源型的变频器和电流源型的变频器。我们知道低电压变频器的拓扑结构都为统一形式的二电平结构方式。而由于电力电子元器件的耐压受到限制,不同的电力电子元器件的开关频率的不同,使得近年来开发出来的高电压、大容量的变频器的拓扑结构形式也是各有千秋。但考虑到整个系统的简单、可靠和经济,目前应用的高压变频器的拓扑结构还主要集中在三电平和四电平的形式上。
近两年来我国在工业新上项目中先后从欧洲的阿尔斯通电气公司引进了几套四电平电压源拓扑结构形式的高压变频器,它们先后应用在我国的太原钢铁公司、宝新不锈钢厂(隶属于宝钢)、青岛钢铁有限公司和天津无缝钢铁总公司。其传动系统采用的是当今传动控制中最为先进的ALSTOM公司的多电平拓扑结构、IGBT元器件的交流高压变频调速装置。此系统的最大特点是,系统为交流高压变频调速装置;主回路采用的是四电平IGBT结构;3台4MW的交流同步主电机共用一条公用直流母线,达到了系统的高性能工艺调速要求,同时系统方案又经济、可靠、节能和最优化配置。整流则采用的是当今最为先进的称之为清洁型能源变流器[1]。此类变频器即可应用在风机、泵、压缩机类的主转动上,也可应用在 工艺性能要求高的轧机生产上和大型船舶驱动上。
2、系统的结构组成
近年来随着电力电子元器件和控制系统结构的发展,GTO、IGCT和IGBT的开发以及变频技术结构形式上的发展,使得高压、大容量变频器得以迅速应用在工业系统当中。变频传动装置首先经历的是在原有的二电平控制结构基础上并串联上多个元器件,其二电平输出波形见图1(a)。元器件的并联连接,输出电压要满足元器件承受电压的要求,这种连接方式所引起的问题与复杂的均流装置相绞合在一起,电路的复杂程度常常易造成元器件的损坏;对于串联元器件的连接形式,输出电流同样要满足元器件的承受能力要求,要确保其分布在元器件上的电压在任何情况下都要均衡,故也容易常常发生系统的故障。因此从系统的可靠性的角度来说,它们都很难保证系统的可靠运行,同时输出波形也很差。
近年来在电力电子元器件发展的同时,变频器的拓扑结构也在随之得到开发,伴随着电力电子元器件的耐压和承受电流的限制,变频器的拓扑结构相继出现了三电平、四电平和多电平结构的形式。对于三电平、四电平和多电平结构的变频器,它提供给电动机非常小的谐波电流且电流波形也更接近交流电动机要求的正弦波电流波形,如图1所示。通过这种拓扑结构我们可知随着多电平的增加,其电压幅值在相应的降低,这使功率元器件所承受的电压降低,更加有利于减少装置产生的dv/dt。
免责声明:本文仅代表作者个人观点,与自动化网无关。对本文及其中内容、文字的真实性、完整性、及时性,本站不作任何保证或承诺。请读者仅供参考。
评论排行