AI进入下半场目标瞄准“举重若轻”“大材小用”
视觉中国供图
——冷聪 中国科学院自动化研究所副研究员
轻量化成为人工智能下半场赛点
然而,近年来,随着信息技术领域的摩尔定律逐步放缓,硬件的发展越来越难以满足当前人工智能模型动辄万亿级规模的存储和算力需求,数据堰塞、存储暴涨、隐私泄露、能耗高企等问题随之而来。
所谓轻量化人工智能,是指以一系列轻量化技术为驱动提高芯片、平台和算法的效率,在更紧密的物理空间上实现低功耗的人工智能训练和应用部署,不需要依赖与云端的交互就能实现智能化操作的人工智能。
“更重要的是,轻量化人工智能将人工智能推向更主流,它大大降低了人工智能系统的部署难度和成本,把人工智能从一场高门槛的科技巨头竞赛变成更容易普惠民生的智能生态。”程健说,在人工智能领域的角逐中,以轻量化为赛点的下半场已经来临。
在表现上,轻量化人工智能是在做减法,降低能耗、降低对硬件平台性能指标的要求、降低与云端的通讯需求等。
在程健看来,在精度接近无损的前提下,将人工智能模型及其计算载体轻量化,是一个极具挑战性的任务。
在软件上,进行模型和算法创新,通过轻量化模型设计、矩阵分解、稀疏表示、量化计算来实现模型的微型化和计算加速;而在硬件上,则要通过流水线设计、存储模式设计等手段进行硬件架构的创新,通过软硬协同设计和优化实现人工智能的轻量化。
作为人工智能的硬件载体,人工智能芯片必须达到更高的性能、更高的效率、更低的功耗和更小的体积。这样才能有足够平价高效的计算平台满足产业需求,承载复杂的人工智能任务,并且使推理和运算从云端迁移到终端。
未来轻量化人工智能将赋能万物
早在2016年,卷积神经网络大规模迈向应用之初,中国科学院自动化研究所就在国际人工智能顶级期刊发表了多篇神经网络模型轻量化领域的重要论文,成为国际上最早开始人工智能轻量化研究的机构之一,相关成果引起了国内外诸多专家的广泛关注。
2020年,中国科学院自动化研究所自主研发的全球首款极低比特量化神经处理芯片(QNPU)成功流片,绕开了芯片计算领域备受关注的“内存墙”难题,在芯片成本、功耗、计算结构、边缘计算等方面实现革命性的变革。
未来,以人工智能驱动的小型化设备会越来越多出现在我们身边。由人工智能芯片、平台和算法组成的轻量化人工智能终端将在越来越多的场景中应用。
同时,在消费电子行业,暗光增强、超分辨率等自动化所设计的轻量化算法及轻量化神经网络计算架构,也为手机终端、安防终端提供了影像增强效果。
程健表示,轻量化人工智能未来将赋能万物,让每个设备都具有环境感知、人机交互、决策控制的能力。(记者 陆成宽)
评论排行