2024年及未来技术趋势预测
亚马逊首席技术官Werner Vogels
在历史的长河中,人类一直在不断开发各种工具和系统,增强自身的能力。无论是印刷术还是流水线,这些创新拓宽了我们的能力,造就新的工作和职位,我们也在不断调整自己来适应这些变革。这种变革的速度在过去一年急剧加快。云技术、机器学习以及生成式AI变得更加普及,从写电子邮件到开发软件,甚至是早期的癌症筛查,这些技术几乎影响到我们生活的方方面面。未来几年,我们将迎来更多产业创新,推动技术的广泛应用,帮助我们跟上日益加快的生活节奏,而这一切都将始于生成式AI。
生成式AI将逐渐具备文化意识
基于文化多样性数据训练的大语言模型(LLM),将能够更细腻地理解人类体验以及复杂的社会挑战。这种"文化流利度"有望让全球用户更方便地使用应用生成式AI。
文化的影响体现在方方面面,从我们讲的故事、吃的食物、穿着打扮,到价值观、礼仪与偏见,以及我们处理问题和做出决策的方式。文化是我们在社会群体中存在的基础,为我们的行为和信仰提供了规则和指南,而这些会随我们所在的环境和接触的对象而变化。
同时,这些差异有时也会导致混淆和误解。例如,在日本,吃面时发出的大声吸汤的声音被视为享受美味的表现,但在其他文化中则被视为不礼貌的行为。在印度的传统婚礼上,新娘可能会穿着精心设计、色彩鲜艳的蓝嘎(lehenga,印度女性的传统服饰);而在西方,白色婚纱才是传统;在希腊,人们会为了好运往婚纱上吐口水。作为人类,我们已习惯跨越多种文化展开协作,我们能够将这些信息置于特定语境中,调整解读方式并做出适当的回应。
所以,为什么不对我们在日常生活中使用和依赖的技术有同样的期望呢?在未来几年,文化将在技术的设计、部署和使用方式中发挥关键作用,其中最显著的影响将体现在生成式AI中。
基于大语言模型的系统要触达全球用户,它们需要达到与人类自身相似的文化流利度。佐治亚理工学院的研究人员在今年早些时候发布的一篇论文中证实,即使给一个大语言模型提供了明确提及伊斯兰祷词的阿拉伯语提示词,它生成的回复仍然是建议与朋友一起饮酒,这在伊斯兰文化中显然是不当之举。这很大程度上与可用的训练数据有关。用于训练许多大语言模型的Common Crawl数据集大约有46%的内容是英语,而且无论是哪种语言,更大比例的内容以西方文化为基础(明显倾向于美国)。而如果使用专门针对阿拉伯语生成的预训练模型并使用阿拉伯语进行预训练,提供相同的提示词,就能生成更符合相应文化背景的回复,比如建议喝茶或咖啡。非西方语境的大语言模型在过去几个月里已经开始出现:例如基于阿拉伯语和英语数据训练的Jais、中英双语模型Yi-34B,以及使用大量日语网络语料库进行训练的Japanese-large-lm。这些迹象表明,具有文化准确性的非西方模型将把生成式AI带给数亿人,并影响从教育到医疗的方方面面。
需要注意的是,语言和文化并不相同。一个模型即使能够提供完美的翻译,也并不代表其具备文化意识。随着大量的历史和经验被嵌入到模型中,我们将看到大语言模型开始形成更广泛的全球化视角。正如人类从辩论探讨和思想交流中学习一样,大语言模型也需要类似的机会来拓展它们的视野并理解文化。在这种文化交流中,有两个研究领域将发挥关键作用:一是基于AI反馈的强化学习(RLAIF),即一个模型可以吸收另一个模型的反馈,不同的模型之间可以相互影响,并根据这些影响更新其对不同文化概念的理解;二是通过多智能体辩论进行协作,即一个模型的多个实例生成响应,之后针对每个响应的有效性及背后的推理展开辩论,最后基于辩论过程得出一致的响应。这两个研究领域都能够降低训练和微调模型所需的人力成本。
大语言模型在相互之间交互和学习的过程中,将从不同文化的视角获得对复杂社会挑战的更为细致的理解。这些进步还将确保模型提供更具韧性和技术准确性的反馈,涵盖如科技等广泛的领域。该影响将是深远的,并在不同地理区域、社区和不同时代中为人们所感知。
女性科技终于崛起
随着女性科技(FemTech)投资的激增、混合医疗的发展以及丰富的数据让诊断和治疗效果不断改善,女性医疗健康领域迎来一个拐点。女性科技的崛起不仅将造福女性,还将推动整个医疗系统的发展。
机器人技术学徒计划(Mechatronics and Robotics Apprenticeship),以及Amazon Cloud Institute等项目。所有这些项目都让处于职业生涯不同阶段的学习者能够获得他们需要入职热门职位的精准技能,而无需承担传统多年制项目的承诺。
需要明确的是,这个概念并非没有先例。例如电工、焊工和木匠等熟练工种,他们的大部分技能都不是在课堂上学到的。他们从初学者到成为学徒,再成长为熟练工,甚至可能成为技术专家。这样的学习是在工作中持续进行的,而且有明确的技能提升路径。这种终身教育的方式——学习并保持好奇心,对个人和企业而言都大有脾益。
所有这一切并不意味着传统学位会消失。这不是一个"非此即彼"的情况,而是关乎选择。在科技领域,传统的学术学习仍然至关重要。但在许多其他行业中,技术的影响已经超越了传统教育系统。为了满足商业需求,我们将迎来一个行业主导的教育机会新时代,而这将是不容忽视的潮流。
评论排行