高压变频器在济钢大功率风机、泵中的应用研究
2011-07-27 16:22:30 来源:互联网 

  众所周知,高压电动机的应用极为广泛,它是工矿企业 中的主要动力。在冶金、钢铁、石油、化工、水处理等各行业的大、中型厂矿中,广泛用于拖动风机、泵类、压缩机及各种其他大型机械。其消耗的能源占电机总能耗的70%以上,而且绝大部分都有调速的要求,但目前的调速和起动方法仍很落后,浪费了大量的能源且造成机械寿命的降低。随着电气传动技术,尤其是变频调速技术的发展,作为大容量传动的高压变频调速技术也得到了广泛的应用。顺便指出,目前习惯称作的高压变频器 ,实际上电压一般为2.3-10kV,国内主要为3kV,6kV和10kV,和电网电压相比,只能算作中压,故国外常成为MediumVoltageDrive。
济钢高压风机水泵调速系统
  我国高压电动机多为6kV和10kV,在济钢老厂区进线电源为6kV,高压电机调速大多为直接启动和液力偶合器调速;新建厂区进线电源电压为10kV,在高压风机调速系统中,采用液力耦合器调速方式。直接起动或降压起动非但起动电流大,造成电网电压降低,影响其它电气设备的正常工作;而且主轴的机械冲击大,易造成疲劳断裂,影响机械寿命。当电网容量不够大时,甚至有可能起动失败。液力耦合器在电机轴和负载轴之间加入叶轮,调节叶轮之间液体(一般为油)的压力,达到调节负载转速的目的。这种调速方法实质上是转差功率消耗型的做法,节能效果并不是很好,而且随着转速下降效率越来越低、需要断开电机与负载进行安装、维护工作量大,过一段时间就需要对轴封、轴承等部件进行更换,现场一般较脏,显得设备档次低,属淘汰技术。
  一般说来,使用高压(中压)变频调速系统对于风机、水泵类负载有两个重要特点:第一,由于消除了阀门(或挡板)的能量损失并使风机、水泵的工作点接近其峰值效率线,其总的效率比液力耦合器提高25%~50%;第二,高压(中压)变频调速起动性能好,使用高压变频器,就可实现“软”起动。变频装置的特性保证了起动和加速时具有足够转矩,且消除了起动对电机的冲击,保证电网稳定,提高了电机和机械的使用寿命。
  现以济钢三炼钢为例,来分析高压(中压)变频器在实际生产中的节能效果。在济钢三炼钢厂共使用了10台高压除尘电机,装机容量合计23.1MW,占三炼钢总装机容量的40%。而从现场实际监测到的工作电流其比重更高,电流值见表1,风机类负载要占总容量的60%。而高压变频器比液力耦合器效率可以提高25%~50%,按每月风机节能20%计算,每月总电量可以降低8%,三炼钢每月电费1000万元,这样每年可以降低成本近80多万元,从上述粗略计算来看,高压(中压)变频调速在济钢高压风机、水泵的应用,前景广泛,节能效果巨大。
高压变频器应用现状
  虽然由于电压高、功率大、技术复杂等因素,高压变频器的产业化在80年代中期才开始形成,但随着大功率电力电子器件的迅速发展和巨大市场的推动力,高压变频器近十多年的发展非常迅速,使用器件已经从SCR、GTO、GTR发展到IGBT、IGCT、IGET和SGCT,功率范围从几百千瓦到几十兆瓦。技术上已经成熟,可靠性得到保障,使用面越来越广。高压变频器可与标准的中、大功率交流异步电动机或同步电动机配套,组成交流变频调速系统,用来驱动风机、水泵、压缩机和各种机械传动装置,达到节能、高效、提高产品质量的目的。
  近年来,各种高压变频器不断出现,高压变频器到目前为止还没有像低压变频器那样近乎统一的拓扑结构。根据高压组成方式可分为直接高压型和高—低—高型,根据有无中间直流环节来分,可以分为交—交变频器和交—直—交变频器,在交—直—交变频器中,按中间直流滤波环节的不同,可分电压源型和电流源型。下面将对目前使用较为广泛的几种高压变频器进行分析,指出各自的优缺点。
1高—低—高型变频器
  变频器为低压变频器,采用输入降压变压器和输出升压变压器实现与高压电网和电机的接口,这是当时高压变频技术未成熟时的一种过渡技术。由于低压变频器电压低,电流却不可能无限制的上升,限制了这种变频器的容量。由于输出变压器的存在,使系统的效率降低,占地面积增大;另外,输出变压器在低频时磁耦合能力减弱,使变频器在启动时带载能力减弱。对电网的谐波大,如果采用12脉冲整流可以减少谐波,但是满足不了对谐波的严格要求;输出变压器在升压的同时,对变频器产生dv/dt也同等放大,必须加装滤波器才能适用于普通电机,否则会产生电晕放电、绝缘损坏的情况。西门子公司早期生产这种结构的变频器,目前已停止生产,仅提供备件。

免责声明:本文仅代表作者个人观点,与自动化网无关。对本文及其中内容、文字的真实性、完整性、及时性,本站不作任何保证或承诺。请读者仅供参考。